首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   54篇
  国内免费   48篇
系统科学   8篇
丛书文集   4篇
理论与方法论   1篇
现状及发展   1篇
综合类   278篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   9篇
  2017年   3篇
  2016年   7篇
  2015年   12篇
  2014年   12篇
  2013年   14篇
  2012年   27篇
  2011年   18篇
  2010年   8篇
  2009年   6篇
  2008年   36篇
  2007年   40篇
  2006年   14篇
  2005年   23篇
  2004年   11篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
排序方式: 共有292条查询结果,搜索用时 312 毫秒
91.
Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high Mn content (25%) appeare better SME, especially in lower strain. SME improves evidently when Si is higher content, especially it′s range from 3% up to 4%.But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloy is weakening gradually as carbon content increases under small strain (3%). But in the condition of large strain (above 6%), SME of the alloy whose carbon content ranges from 0.1% to 0.12% shows small decreasing range, especially of alloy with the addition of compound RE.  相似文献   
92.
In order to obtain thermoelectric materials with high figure of merit, the concept of Hollow (Vacuum) Quantum Structure or Effect and related thermoelectric materials design were proposed. To demonstrate the theory, the materials of (Bi0.15Sb0.85)2Te3 with porous structure have been fabricated. Their thermoelectric properties and the microstructure were investigated and compared with their density structure. It was found that the porous structure could improve their properties greatly.  相似文献   
93.
The Kaiser effect is formally described as the absence of detectable acoustic emission (AE) events until the load imposed on the material exceeds the previous applied level and is usually used to estimate geostress. By focusing on the heterogeneity of rock material, the mechanism of the Kaiser effect under cyclic loading is analyzed based on statistic damage mechanics. Two groups of granite specimens have been cyclically loaded with two different loading paths to verify the theoretical results. The heterogeneity of rock is the real reason that causes irrecoverable damage on the Kaiser effect of acoustic emission in cyclic loading. The Kaiser effect reflects the damaged state in rocks rather than the previous stress imposed on it. Applications for using the Kaiser effect to estimate geostress were discussed here. It is shown that the commonly used uniaxial loading method for estimating geostress is not in accor-dance with the theoretical and experimental results. The analysis is of importance to use the Kaiser effect correctly for estimating geostress or in other fields.  相似文献   
94.
用溶胶-凝胶法制备纯的和分别掺杂第一过渡系金属离子(V5 、Cr3 、Mn2 、Fe3 、Co2 、Ni2 、Cu2 和Zn2 )的TiO2纳米粒子,以甲基橙的光催化氧化评价纳米粒子的活性,借助XRD考察掺杂对TiO2相变及粒径的影响,探讨金属离子的物化性质与其对TiO2性能影响的关系,研究掺杂改性的机制.结果表明:除Cr3 外的其它离子掺杂均能提高TiO2活性且最佳掺杂量相近,反应过程中V2O5析出使0.1%V-TiO2活性逐渐降低;掺杂均能轻微抑制锐钛矿向金红石的转变,对晶粒长大轻微抑制或无影响;离子适中的Ea/r及全充满或半充满的电子构型均有利于TiO2活性提高,两者谁占主导地位随掺杂离子不同而不同;离子化合价高于 4时高化合价对催化剂活性的正效应能完全克服不适的Ea/r与电子构型的负效应.第一过渡系金属离子掺杂对TiO2活性的影响由金属离子的Ea/r、电子构型及价态共同决定,与掺杂对TiO2结构相变和粒径的影响关系不大.  相似文献   
95.
To investigate the microsegregation phenomena and complex (Ti, Nb)(C, N) precipitation behavior during continuous casting, a unidirectional solidification unit was employed to simulate the solidification process. The samples of Ti, Nb-addition steels after unidirectional solidification were examined using field emission scanning electron microscope (FE-SEM) and electron probe X-ray microanalyzer (EPMA). In such specimens, dendrite structure and mushy zone can be detected along the solidification direction. It shows that the addition of titanium, niobium to high-strength low-alloyed (HSLA) steel results in undesirable (Ti, Nb)(C, N) precipitation because of microsegregation. The effect of cooling rate on (Ti, Nb)(C, N) precipitation was investigated. The composition of large precipitates was determined using FE-SEM with EDS. Large (Ti, Nb)(C, N) precipitates could be divided into three kinds according to the composition and morphology. With the cooling rate increasing, Ti-rich (Ti, Nb)(C, N) precipitates are transformed to Nb-rich (Ti, Nb)(C, N) precipitates.  相似文献   
96.
The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.  相似文献   
97.
The normal mode model for scattering in shallow water is employed to investigate the forward scattering with a target crossing the source-receiver axial line. An experiment was conducted in a littoral environment to analyze forward scattering by a slowly moving object. The theoretical and experimental results show that the sound field aberration takes minimum values if the object is located mid-point along the source-receiver line, whereas it attains its maximum if the object is close to the source or receiver. The total field is either enhanced or suppressed if the object crosses different Fresnel zones. In addition, the duration of shad- ow-induced aberration is dependent on the width of the first Fresnel zone, which is longest at the mid-point of the source-receiver line.  相似文献   
98.
The study found that strong magnetic anomalies repeatedly took place before big earthquakes. Based on geomagnetic record analysis results,we discussed a possible pattern of the magnetic anomalies prior to earthquake. In meizoseismal area or epicenter,in a time period of 36 h to about 10 min before earthquake,the exceptional big geomagnetic change increases with the magnitude of earthquake. We calculated that,in a place of 1 km from the epicenter,the magnetic anomaly before destructive earthquakes of Ms 6~9 can reach to 102~104 nT(the magnitude of earth magnetic field is 104 nT) ,rather than the magnitude of 10 nT from seismomagnetic effect theories since 1960s. From this we speculated the abnormal magnetic ULF near epicenter before earthquake seems to be an "intermittent magnetic eruption". Accordingly,we proposed that geomagnetic induction earthquake alarm can be a new pre-warning method to surmount hardship in solving the puzzledom of earthquake imminent prediction.  相似文献   
99.
Ultrasonic field with a frequency of 20 k Hz is introduced into the solidification process of ternary Ag33Cu42Ge25 eutectic alloy from the sample bottom to its top. The ultrasound stimulates the nucleation of alloy melt and prevents its bulk undercooling. At low ultrasound power of 250 W,the primary ε2phase in the whole alloy sample grows into non-faceted equiaxed grains, which differs to its faceted morphology of long strip under static condition. The pseudobinary(Ag t ε2) eutectic transits from dendrite shape grain composed of rod type eutectic to equiaxed chrysanthemus shape formed by lamellar structure. By contrast, the ultrasound produces no obvious variation in the morphology of ternary(Ag t Ge t ε2) eutectic except a coarsening effect. When ultrasound power rises to 500 W, divorced ternary(Ag t Ge t ε2) eutectic forms at the sample bottom. However, in the upper part, the ultrasonic energy weakens, and it only brings about prominent refining effect to primary ε2phase.The microstructural evolution mechanism is investigated on the cavitation, acoustic streaming and acoustic attenuation.  相似文献   
100.
This study was carried out to investigate the effect of solidification cooling rate on the corrosion resistance of an Mg–Zn–Ca alloy developed for biomedical applications. A wedge shaped copper mould was used to obtain different solidification cooling rates. Electrochemical and immersion tests were employed to measure the corrosion resistance of Mg–Zn–Ca alloy. It was found that increasing cooling rate resulted in a significant improvement in the corrosion resistance of the Mg–Zn–Ca alloy. The findings were explained in terms of solidification behaviour in association with the change in solubility of the alloying elements, microstructural homogeneity and refinement and chemical homogeneity as well as the increased cooling rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号